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We determine a partition of three-dimensional space into cells by minimization of the sum of the first
Laplacian eigenvalues over the cells. This partitioning scheme emerges as a stationary state of a reaction-
diffusion process taking place in a system of n different species which mutually annihilate, and simultaneously
are duplicated in an autocatalytic reaction, so that the number of particles is kept constant and equal for each
species. The system is considered in the limit of strong reactivity, so that the species separate each other into
cells with well-defined, sharp boundaries. For a given n and fixed sizes of a periodic simulation box, this
partition minimizes the aforementioned sum of eigenvalues. Further minimization is done by changing n and
the side ratio of the periodic box. The global minimum is obtained for the structure with A15 symmetry, similar
to the Weaire-Phelan foam. Depending on n and the side ratio, there are also many local minima, in particular:
hcp �hexagonal close packed�, fcc �face centered cubic�, the Kelvin structure, and Frank-Kasper sigma phase.
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I. INTRODUCTION

In our recent paper �1� we described a space partitioning
scheme, given as the stationary state of a certain reaction-
diffusion system. We discussed it in details for a two-
dimensional system. In short, the system consists of n differ-
ent species, each represented by the same number of
particles, performing random walk within the accessible
space. When two particles of the same type meet, nothing
happens, but when they are of two different types, they mu-
tually annihilite. The loss of particles due to the annihilation
is immediately compensated by duplicating randomly chosen
particles of the two types involved in the act of annihilation,
so that the number of particles is preserved for each type
separately. The process can be considered as the concurrence
of diffusion, mutual annihilation, and autocatalytic reproduc-
tion of particles. These reactions lead to the spatial segrega-
tion of species. Dynamical and thermodynamical properties
of the process were described in �2�. In the stationary state
whole accessible space is divided into n adjacent domains,
each occupied by only one type of particles. We have shown
numerically �1,2� that this partition of the space satisfies the
following variational rule, further referred to as the �� rule:

�
i=1

n

�i = minimum, �1�

where �i is the first �i.e., the smallest one� Dirichlet Laplac-
ian eigenvalue of the ith cell, defined by the equation �ipi
+�pi=0 with pi�0 in the interior and pi=0 at the boundary
of the ith cell. Moreover, the spatial density of particles of ith
type at point r is proportional to pi�r�.

The goal of this paper is to find solutions of the �� rule in
three-dimensional �3D� space and compare them with struc-
tures arising from other ways of partitioning space into cells.

Two most widely known partitions are structure of foam and
Voronoi tessellation for crystals. Kelvin studied the problem
of foam consisting of equal volume cells characterized by the
minimal total surface area. For this foam Kelvin proposed
the structure composed of identical, slightly curved tetra-
kaidecahedra �14-hedra�, located on the bcc lattice sites. A
century after Kelvin, Weaire, and Phelan �3� found a struc-
ture with cells of two different types �12-hedra and 14-hedra
of equal volume� with total area smaller by 0.33% than the
Kelvin foam. There is no formal proof that the Wearie-
Phelan structure is optimal and thus the Kelvin problem is
still open.

In the two-dimensional case both the monodisperse foam
�4� and the �� rule �1� led to the same structure: the periodic
arrangement of the hexagonal cells. We are going to check if
this similarity holds for 3D.

Space partitioning is also related to crystals, although the
cells surrounding atoms must be extraneously constructed.
This can be done using Voronoi tessellations. Although
foams are often considered as relaxations of some Voronoi
decompositions �5�, the preferred structures of foams and
crystals seem to be different. The Voronoi tessellation of fcc
and hcp structure does not constitute a stable foam. On the
other hand, the structure of Weaire-Phelan foam, conforming
to Voronoi tessellation of A15 lattice �the symbol A15 comes
from Strukturbericht designation �6��, occurs rarely in crys-
tals, examples are �-tungsten and some alloys such as
Cr3-Fe.

The driving force behind the formation of the aforemen-
tioned structures is directly connected with the boundary of
the cells in the case of foams, and with the interactions of
their centers in crystals. Sometimes both interiors and bound-
aries of cells are important, as in self-organized structures
formed by liquid crystalline micelles �7–9�. The new para-
digm of space partitioning, defined by the �� rule, is related
neither to the surface nor the central points, but spectral
properties of cells.
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II. MODEL

Instead of the direct computation of the Laplacian eigen-
values in cells we use a continuous model of the aforemen-
tioned reaction-diffusion system in the limit of strong reac-
tivity �2�. For each of n types we define the density function,
pi�r , t�, and starting from any distribution �but still pi must
be all non-negative, and at the given r only one pi�r� may be
nonzero� we look for the stationary state by solving the fol-
lowing integrodifferential equations:

�

�t
pi = D�pi + �i�t�pi, �2�

�
V

pidV = 1, �3�

pipj = 0 �i, j = 1, . . . ,n, i � j� , �4�

where D is the diffusion constant �the same for each compo-
nent� and �i�t� are the time dependent Lagrangian multipli-
ers, which can be unambiguously determined to reconcile the
evolution, Eq. �2�, with the normalization, Eq. �3�, and the
free boundary condition describing annihilation, Eq. �4�.
Physically, the last term in Eq. �2� describes how many par-
ticles are duplicated at a given point and time. In the station-
ary state, each pi becomes the first eigenfunction of the La-
placian with Dirichlet boundary conditions, so that

�ipi + �pi = 0, �5�

where �i is the first eigenvalue of the cell occupied by the ith
component.

Beyond the stationary state, both the boundaries of cells
and pi do change in time. As long as the evolution proceeds,
pi do not conform to the eigenfunctions of cells in their mo-
mentary shapes. However, there exist a variational rule that
sets the arrow of time. We have shown �1,2,10� the existence
of the positively defined functional:

��p1, . . . ,pn� = − �
i=1

n ��
V

pi�pidV���
V

pi
2dV�−1

, �6�

which monotonously decreases in time until it reaches a
minimum in the stationary state. In the stationary state the
sum of �i is minimized as well �Eq. �1�� and, moreover,
��i=�. In order to compare structures for different geom-
etries �X ,Y ,Z� and different n we renormalize � as follows:

�̃ =
�XYZ�2/3

n5/3 � . �7�

The renormalized �̃ does not depend on the overall scale. In
the stationary state �but not beside it� �̃ can be expressed in
terms of average properties of cells:

�̃ = V̄2/3�̄ , �8�

where V̄=XYZ /n is the average volume of a cell and �̄
= ��1+�2+ ¯ +�n� /n is the average first eigenvalue of a cell
in the partition. The analogous cost function for monodis-

perse foams �11� is often chosen in the form �= Ā3 /V2 where

Ā is the average area surface of a cell and V= V̄ since all Vi
are equal. Both �̃ and � are functions of �n ,X ,Y ,Z�, and
both may be used to classify different structures for the sake
of optimality; in both cases the lower the value, the better the
structure.

III. METHOD OF SIMULATION

Although we are interested only in the stationary state, the
way of its finding is nothing but simulation of the dynamic
process described above, starting from any initial conditions
�random or strictly prepared as well�, and eventually reach-
ing the stationary state �not necessarily unique�. The simula-
tion is performed using discrete space and time. Instead of
the continuous pi�r , t�, the density of the ith component is
represented by ph,k,l

i with h ,k , l indicating a node of the regu-
lar periodic grid �time index was omitted for brevity�. The
simulation method belongs to the family of fractional step
methods, also known as operator splitting. A complete time
step of the simulation relies on a single repetition of the
following cycle.

�A� Diffusion step.
�B� Annihilation step.
�C� Renormalization step.

For clarity, results of intermediate calculations after these
steps are denoted p�, p�, and p�, respectively. In fact, there is
only one data structure. Moreover, there is no need to store n
separated densities for different components—an efficient al-
gorithm should store only two numbers per node: the com-
mon density value and the integer number determining the
current component.

A. Diffusion step

For all lattice nodes the density functions are treated by
the diffusion operator as follows:

ph,k,l�i = ph,k,l
i + D�h,k,lp

i, �9�

where �h,k,lp
i stands for the discrete Laplacian of the second

order. After this step, the lattice nodes lying along the inter-
face are shared between two or more components.

B. Annihilation step

For such a node �h ,k , l�, which has been distributed be-
tween several components as a result of diffusion step, we
determine the surviving component, i, and its new density,
pi, whereas the remaining pj for j� i are reset to 0. The
choice of i and the calculation of pi is performed by model-
ing a chemical reactor, in which the homogeneous mixture of
n components undergoes the reaction of mutual annihilation
between components. Details of this procedure are described
in �2�, whereas its effective use is described hereafter.

The component i, which remains in the reactor as the
result of full exhaustion of all other reagents, is appointed as
the one for which the concentration at the tested node has
been the largest:
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i:ph,k,l�i = max	ph,k,l�1 , . . . ,ph,k,l�n 
 . �10�

The new density is calculated as follows:

ph,k,l�i = �ph,k,l�i �2−n �
j=1,. . .,n, j�i

�ph,k,l�i − ph,k,l�j � . �11�

If two or more largest density functions have been equal,
then there is no winner—all densities ph,k,l�1 , ph,k,l�2 , . . . , ph,k,l�n are
reset to 0, which means that the node becomes empty. Obvi-
ously, the annihilation step does not change nodes which
have been occupied by only one component after the diffu-
sion step: for such nodes p�= p�.

C. Renormalization step

In Eq. �2�, the loss of normalization is immediately com-
pensated by the term �i�t�pi. Here, however, the renormal-
ization is performed as follows:

Wi = �
h,k,l

ph,k,l�i , �12�

ph,k,l�i =
1

Wi
ph,k,l�i . �13�

After this procedure, the full time step is completed—p�i

will be used as pi in the next time step.

D. Testing the algorithm

The justification for splitting of the right side of the dif-
ferential equation such as Eq. �2� into separate operations of
diffusion, annihilation, and renormalization, as well as nu-
merical errors introduced by this trick, were discussed in our
previous paper �10� for the case of n=1 and a constant, ab-
sorbing boundary condition.

However, for n�1 it is not easy to determine errors pro-
duced by the annihilation procedure described above. A de-
tailed discussion of the problem is presented in the Appen-
dix. Regardless of whether the evolution of boundaries in
simulations conforms to the continuous model defined by
Eqs. �2�–�4�, regardless of any dynamical properties of both
the continuous and discrete systems, there is one strong ar-
gument in favor of the method: the discrete version of the
functional �̃, defined in Eq. �7�, systematically decreases un-
til the stationary state is reached. This means that even if the
algorithm does not exactly follow the dynamics given by
Eqs. �2�–�4�, it goes in the right direction, most probably
leading to the same local minimum of �̃, or, to be more
precise, its discrete equivalent:

�̃ = −
�XYZ�2/3

n5/3 �
i=1

n �
h=1

X

�
k=1

Y

�
l=1

Z

�ph,k,l
i �h,k,lp

i�

�
h=1

X

�
k=1

Y

�
l=1

Z

�ph,k,l
i �2

. �14�

In order to monitor simulations, the above functional was
calculated with �h,k,l being the discrete Laplacian operator of
the second order—the same that was used in the diffusion
step.

However, in order to improve the accuracy in some spe-
cial cases �see the Appendix�, the final results for �̃ in the
stationary state were calculated using a 25-point, eight order
Laplacian �16� and a kind of extrapolation of pi onto the
nodes occupied by components other than i. If such nodes,
say, of the type j instead of i, belong to the 3D 24-point
neighborhood of 	h ,k , l
 �e.g., nodes in the range from 	h
−4,k , l
 to 	h−1,k , l
 and further from 	h+1,k , l
 to 	h
+4,k , l
�, then −pj is used instead of pi�=0� as the local
density at these nodes.

Formally, this improvement may be written as follows:

�̃ = −
�XYZ�2/3

n5/3 �
i=1

n �
h,k,l

�ph,k,l
i �h,k,l�pi − �

j�i

pj�
�
h,k,l

�ph,k,l
i �2

. �15�

The discussion of this pseudoextrapolation has been pre-
sented in �2�, whereas the comparison of results for two- and
eight-order Laplacians is given in the Appendix.

One might question the use of an eight-order differential
operator in connection with the simplest possible method of
numerical integration �the rectangular quadrature�. This
doubt would be justified for an arbitrary function, but not for
pi in the stationary state. In particular, if pi is exactly an
eigenfunction of the Laplacian, the choice of quadrature does
not matter—as long as the same quadrature is used in the
numerator and denominator of Eqs. �6� and �14�.

IV. RESULTS

More than 1000 coarse simulations, performed with peri-
odic boundary conditions for various �n ,X ,Y ,Z�, enabled us
to select interesting ranges of the parameters for final simu-
lations with a grid refined up to X=Y =Z=300 nodes. The
simulations were performed until the system reached the sta-
tionary state, starting from both random and symmetric ini-
tial conditions. The former required much more simulation
time and always led to stable structures, whereas the latter
created the possibility of getting stuck in unstable stationary
states, which could be an advantage when ranking both
stable and unstable structures by �̃.

Figure 1 shows the cells �estimated as the zero density
isosurfaces� for the parameters �n ,X ,Y ,Z� chosen as to en-
able four basic structures of crystallography: fcc �denoted by
strukturbericht designation A1, see �6��, bcc �A2�, hcp �A3�,
and diamond lattice �A4�. Structures A1–A3 are stable and
optimal in their geometries �the parameters and resulting �̃
are collected in Table I� whereas A4 is unstable i.e., any
perturbation of densities will lead to a new structure. The
cells of A1 and A3 are dodecahedra with all flat faces: 12
identical rhombs in A1 and six rhombs and six trapezoids in
A3. After rotation of the marked half by 60°, the A1 cell
transforms into A3. Due to this symmetry, A1 and A3 struc-
tures have equal surface area and would be equivalent as
foams �in terms of cost function ��; but they are not equiva-
lent with respect to �� minima, since their values of �̃ are
slightly different, in favor of A3. Cells of A2 and A4 have
both flat and curved faces: six flat and eight curved in the
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tetrakaidecahedron of A2, and 12 flat and four curved in the
hexakaidecahedron of the unstable A4 structure. The A2 cell
looks very much like Kelvin solid, but the details of curva-
ture �Fig. 2� may be different. In contradistinction to foams,
A2 structure is far from being optimal in the partition mini-
mizing �̃—we found several better structures, including A3
and A1 �Table I�.

Surprisingly the best structure, in terms of both the sur-
face area and the functional �̃, is A15 structure, whose trans-
lational unit is a cube �X=Y =Z� consisting of n=8 cells of
two different shapes: two dodecahedra and six tetrakaideca-
hedra, as shown in two different views in Fig. 3. Let us
suppose the periodic box with X=Y =Z=4. The centers of

cells are at points with coordinates �0,0,0� and �2,2,2� for
12-hedra and �0,2,1�, �0,2,3�, �1,0,2�, �3,0,2�, �2,1,0�, and
�2,3,0� for 14-hedra. As shown in Fig. 4, there are two types
of vertices in 12-hedron and four types in 14-hedron. Verti-
ces of one such 12-hedron are

� �	a, 	 a, 	 a� �eight vertices in Fig. 4� ,

� �0, 	 b, 	 c�, �	b, 	 c,0�, �	c,0, 	 b� �12
�

and of one of 14-hedra �shifted to the origin�:

� ��1 − a�, 	 �2 − a� ,	 a�, �− �1 − a�, 	 a,

	 �2 − a��;�8
� ,

� ��1 − c�, 	 �2 − b�,0�, �− �1 − c�,0,

	 �2 − b��; �4
� ,

� �1, 	 �2 − c�, 	 b�, �− 1, 	 b, 	 �2 − c��;

�8
� ,

� �1,0, 	 1�, �− 1, 	 1,0� �4
� .

Parameters a, b, and c describe a general structure with A15
symmetry. According to the previous study of A15 foam
structure �11�, these parameters are c=�32�1.259 92, b
=c /2�0.629 96, a= �2 /3�c�0.839 95 for flat faces. The
values obtained from our simulations are slightly different:

A1

A2

A3

A4

FIG. 1. �Color online� Single cells of A1 �fcc�, A2 �bcc�, A3
�hcp�, and two adjacent cells of unstable A4 �diamond� structure.

TABLE I. Numbers of different polyhedra �12–16 faces� and optimal geometries of selected structures sorted by �̃ �estimated from Eq.
�15� with an absolute error less than 10−3�. Unstable structures Ah and A4 were obtained only due to the symmetry of initial conditions.

Composition �polyhedra� Geometry

Structure n #12 #13 #14 #15 #16 Y /X Z /X �̃

A15 8 2 - 6 - - 1 1 26.9722

A3 8 8 - - - - � 3
4

� 2
3

26.9756

A1 4 4 - - - - 1 1 26.9763

Ab 30 2+8 - 8+8 4 - 1 �2−�3 26.9828

Shields 52 12 12 12+12 4 - �3 �2−�3 26.9953

A2 16 - - 16 - - 1 1 27.0303

Rhombs 24 - 8+8 8 - - 1 � 1
3

27.0952

Z 14 6 - 4 4 - �3 1 27.1140

C15 24 16 - - - 8 1 1 27.2195

Ah 8 ¯ ¯ cubes ¯ ¯ 1 1 29.6088

A4 8 - - - - 8 1 1 33.4450

1.00

0.99

0.98

0.97

FIG. 2. �Color online� Curvature of hexagonal face in cell of A2.
“Square” faces of the same cell are flat.
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c�1.260, b�0.591, a�0.814. This fact means that, al-
though similar, A15 structure resulted from the �� rule is
slightly different than the Weaire-Phelan foam �11�. Apart
from the different vertices, also the curvature of the faces
differs, as well as 14-hedron to 12-hedron volume ratio,
which is about 1.054 in �� A15 and 1 �by definition� in the
foam. The angle of meeting edges in foam �11�, arccos
�−1 /3��109.47°, is close to the angle of the regular penta-
gon, 108°. For this reason, the dodecahedron in the A15
structure is similar to the regular dodecahedron. The differ-
ence can be seen when trying to overlap two such dodecahe-
dra after rotation of one of them by 72°, as shown on the
right side in Fig. 5. Thanks to the curvature of faces, this
dodecahedron is a strictly convex solid.

A15 belongs to the family of tetrahedrally close packed
�TCP� structures which often occur in monodisperse foams.
Some of them are called Friauf-Laves or Frank-Kasper
phases �12�. Many of such structures can be assembled from
basic building blocks of several types �13�, as illustrated in
Fig. 6. Using the marked atom positions as the initial density
peaks leads to the formation of the appropriate structure, e.g.,
as shown in Fig. 7 for the Frank-Kasper � phase, with struk-
turbericht designation Ab. Information about the structures
from Fig. 6 as well as previously described A1–A4 and �not
shown� Laves cubic phase with strukturbericht designation
C15 are collected in Table I. From columns #12–#16 one can
read numbers of different kinds of polyhedra per rectangular
prism with sides X ,Y ,Z �a single translational unit in the
periodic structure�. For example, Ab consists of ten 12-hedra
of two different kinds �2+8�, 16 14-hedra of two kinds �8

+8�, and four identical 16-hedra enclosed in the periodic box
of size d
d
�2−�3d.

V. SUMMARY

We introduced a paradigm of 3D space partitioning, the
�� rule, and proposed a scale-independent functional, �̃, to
classify its solutions. On the basis of computer simulations
we also found several minima and classified them in term of
�̃.

The lowest value, �̃�26.9722, was obtained for A15
structure. If 3D space could be tessellated by spheres, their �̃
would be equal to � 4

3 �2/3�8/3�25.6463. Optimality of the

◦◦

◦◦

◦◦

◦◦

��

�

�
�

�

� �

�

�

�

�

�

�
�

�

�
��

�

�
�

�

�

��

��

�

�

�
�

�

��

�

FIG. 4. �Color online� Dodecahedron �left� together with adja-
cent tetrakaidecahedron �right� of A15 structure with different types
of vertices marked.

FIG. 5. �Color online� Overlapping two colored �two different
gray levels� A15 dodecahedra after rotation of one of them by 120°
around the threefold axis, and by 72° around presumed fivefold axis
of symmetry �the axis in both cases points outward perpendicularly
to the drawing plane�. Clearly this dodecahedron has a threefold
symmetry axis but lacks the fivefold symmetry axis.

shields

rhombs

A15Z

Ab

FIG. 6. �Color online� TCP �tetrahedrally closed packed� struc-
tures assembled from blocks of several types. They are: Z, A15, �
�Ab�, shields, and rhombs. Circles denote atom locations along the
Z axis, perpendicular to the drawing plane: circles within blocks are
at z=k and z=k+1 /2 �distinguished by two different colors / gray
levels�, black circles in corners of blocks are at z=k	1 /4 for any
integer k. Highlighted are periodic units, whose height along the Z
axis is 1, the same as the side length of the square block.

FIG. 3. �Color online� Translational unit of A15 structure with
both dodecahedra marked by green �lighter gray shade�.
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A15 structure both here and in the ideal foam suggests that
A15 cells are most similar to a sphere—the ideal shape of a
single cell as abstracted from the rest of the partition. There
are counterexamples, however, in other paradigms of space
partitioning, where also a sphere is a transcendent ideal, but
the best realization is not the Weaire-Phelan structure. In
theory of vector quantizers �14� what is minimized is the
effective normalized moment of inertia �NMI�. In this case
the optimal structure is A2 and not A15.

The Laplacian is one of the most prominent operators and
we believe that the space partition based on its spectral prop-
erties constitutes a valuable paradigm in physics. The �� rule
may occur in various different optimization problems. The
sum of ground state energies of quantum wells filling the
space will be minimized by satisfying the �� rule. The same
partition should be considered when minimizing the mean
escape rate �in the sense of reaching the walls� of randomly
walking particles enclosed in the cellular structure.
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APPENDIX: TESTS OF NUMERICAL CALCULATIONS

The problem we tried to solve belongs to the family of
so-called free boundary problems, which in general are hard
to deal with, especially in terms of error analysis. These er-
rors are not only due to discretization and use of a finite grid,
but also due to the uncertainty of estimated boundary, whose
evolution emerges as a result of simulation. One of the most
available methods for testing numerical algorithms is check-

ing solutions, which are known analytically, or may be ob-
tained in several different ways. Hereby we present two such
tests.

1. Analytical results for n=2

Due to the periodic boundary conditions, use of n=2 cor-
responds to the partitioning of space into two continuous
structures of infinite size rather than into infinitely many
clones of two closed cells. For this reason the interpretation
of �̃ given by Eq. �7� does not make sense for the case of
n=2. However, simulations performed for this case may be
compared to analytical results, which are known �15�. For
X=Y =Z, i.e., for a cubic box, the interface conforms to the
nodal surface of the function:

Q�x,y,z� = A sin
2�x + �

X
+ B sin

2�y + �

X
+ C sin

2�z + 

X

defined by Q�x ,y ,z�=0. The density functions, p1�r� and
p2�r�, correspond to the positive and negative part of Q�r�,
so that

p1�r� = Q�r�, p2�r� = 0 �for Q�r� � 0� ,

p1�r� = 0, p2�r� = − Q�r� �for Q�r� � 0� .

Parameters A, B, C, x0, y0, and z0 are arbitrary, though at
least one of �A ,B ,C� must be nonzero, and there must be

�
0

X �
0

X �
0

X

�Q�x,y,z��dx dy dz = 2

to normalize p1 and p2. Depending on the initial conditions
of simulation, different combinations of these six constants
�five of them independent� may be needed to reconstruct the
resulting stationary state. Such a degeneracy is due to sym-
metry of the cube and may be used for testing quality of
simulations. First of all, as long as the fluctuations are not
taken into account, there should not be any evolution from a
stationary state toward another one, with different param-
eters. Second, each of the stationary states must have the
same value of �̃. Third, up to the numerical errors, the cal-
culated �̃ must be equal to the theoretical value, 24/3�2

�24.869 844 678 135.
These three properties were tested for simulations starting

from a random initial condition with varying seed. Several
grids were used: from 10
10
10 up to 80
80
80 nodes.
Values of �̃ calculated with the second-order discrete Laplac-
ian were: 24.0624 for X=10, 24.8188 for X=40, and 24.8571
for X=80 �X denotes grid—number of nodes per dimension�.
The same values calculated with eight-order Laplacian were
24.869 67 for X=10, 24.869 844 675 for X=40, and
24.869 844 678 12 for X=80. It is clear that the deviations
from the theoretical value of �̃ are solely due to the trunca-
tion error of discrete Laplacian, and are of the order of
�X /2�−2 for second-order Laplacian, and �X /2�−8 for eight-
order Laplacian �relative errors, estimated for the minimum
number of width of the single component domain, which is
X /2 as in the case of two parallel stripes shown in Fig. 8�.

No dependence on initial conditions was observed, even
though fitted values of A, B, C, x0, y0, and z0 covered the

FIG. 7. �Color online� Four adjacent translational units of Ab

structure �in the crystallography known as the Frank-Kasper �
phase�. One such unit �highlighted� contains n=30 cells. Lines en-
able identification of triangular and square blocks corresponding to
the initial configuration from Fig. 6.
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whole available range. Moreover, any deviations of the sta-
tionary densities p1 and p2 from the exact solution �con-
structed with these fitted parameters and measured at grid
nodes� were of the order of floating point arithmetic error
�10−15 here�. This is because the continuous and the discrete
eigenfunctions of the Laplace operator for a rectangular
prism are strictly coincident, as far as the grid is regular and
oriented in accordance with the edges of the prism.

2. Simple cubic structure

For the reason mentioned above, metastable structures
based on simple cubic lattice, strukturbericht designation Ah,
result in very accurate �̃, as far as the orientation of the
lattice �more precisely: the set of initial conditions in the
form of a lattice of n evenly spaced density peaks� is com-
patible with the simulation grid and the periodic boundary
conditions. For example, calculations of �̃ with eight-order
discrete Laplacian produce the same result for �X=Y =Z
=128, n=512� as for �X=Y =Z=32, n=8�, since in both
cases the domains of single component are the same cubes of
size 16
16
16. For such a cube the relative error for eight-
order Laplacian should be of the order of 16−8�2
10−10.
The calculated �̃=29.608 813 18 whereas the exact value is
3�2�29.608 813 20, thus the relative difference is of the
same order as the truncation error of the Laplacian.

3. Slanted simple cubic structure for n=24

In the two latter examples the overall errors involving
calculation of �̃ were exceptionally small, due to the coinci-
dence of discrete and continuous eigenfunctions of the prob-
lem. As a counterexample, we again consider the unstable Ah
�simple cubic� structure, but this time the main crystallo-
graphic axes of the structure are not parallel to the axes of
the simulation grid.

Consider a rectangular prism of size �8
�6
�12. It has
volume 24, and may be used as a unit cell encapsulating 24
atoms of a simple cubic structure with lattice constant equal
to 1. The positions of atoms may be expressed as hB1

+kB2+ lB3, where h ,k , l are integer numbers, and the vec-
tors:

B1 = ��2

2
,

�6

6
,

�3

3
 ,

B2 = �−
�2

2
,

�6

6
,

�3

3
 ,

B3 = �0,
2�6

6
, −

�3

3


form the orthonormal basis, i.e., they are mutually perpen-
dicular and of unit length.

Unfortunately, such a construction, even scaled, cannot be
realized with a regular grid—the side ratios are irrational.
However, an approximation may be used. We used X
=132, Y =114, Z=162, and generated the initial density
peaks at the grid nodes pointed by an integer multiple of the
vectors:

B1 = �33,19,27� ,

B2 = �− 33,19,27� ,

B3 = �0,38,− 27� .

During the simulation the metastability of Ah was clearly
seen—the functional �̃ given by Eq. �14� decreased rapidly
to some metastable value, and after a long time of very slow
descent, continued to decrease toward its new �probably
stable� stationary state. In the plateau �for the point of the
slowest descent� there was �̃=29.6079, and the obtained
structure is given in Fig. 9. A deviation from the theoretical
value of �̃=3�2 is partly due to rounding of X ,Y ,Z, but also

FIG. 8. �Color online� Triply periodic surface dividing two in-
finite domains �n=2�, depending on the parameters: A�0, B=C
=0 �upper left�, A=B�0, C=0 �upper right�, A=B=C�0 �bottom
right�, each nonzero, no two equal �bottom right�

FIG. 9. �Color online� Simple cubic �Ah� structure slanted to-
ward the axes of the periodic box. Four adjacent unit cells are
shown. The Z axis of the simulation box is perpendicular to the
picture’s plane, so that the inclination of the “crystallographic
planes” is clear.
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may be caused by the simulation method. Let us assume it is
caused by the truncation error of the second order discrete
Laplacian. For the cubes of size d= �XYZ /n�1/3�47 the rela-
tive error should be of the order of d−2�5
10−4, that is
about ten times larger than the observed �relative� difference.

4. Conclusions

Summarizing the above-mentioned cases and many other
similar tests made for a two-dimensional prototype of the

algorithm �1�, we conjecture that the maximum relative error
of estimating �̃ may be assumed as �XYZ /n�−2/3. In order to
improve the accuracy without dealing with very long times
of simulation we used the mesh refining—the structures
found for �X ,Y ,Z� were mapped onto �kX ,kY ,kZ�, most of-
ten with k=2 or 3. After refining, the simulation was per-
formed up to the new stationary state, which was indicated
by tracing the evolution of the functional �̃.
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